Close Menu
Urban Ag News
    Facebook X (Twitter) Instagram
    Urban Ag News
    Facebook X (Twitter) Instagram
    SUBSCRIBE
    • Greenhouse
    • Vertical Farm
    • Business
    • Technology
    • Functional Food
    • Climate
    • Education
    • Organics
    Urban Ag News
    Home»Blog»Education»Artificial intelligence can grow a lettuce crop autonomously
    Education

    Artificial intelligence can grow a lettuce crop autonomously

    By urbanagnewsApril 13, 2022Updated:April 14, 2022No Comments5 Mins Read
    Twitter LinkedIn Facebook
    Share
    Facebook Twitter LinkedIn Email WhatsApp

    In a first try-out crop cycle lettuces were grown with AI algorithms in a hydroponic greenhouse system during the 3rd Autonomous Greenhouse Challenge

    The five international teams participating in the final rounds of the 3rd Autonomous Greenhouse Challenge have completed the first try-out experiment. The teams tested their algorithms and gained experience during a first crop cycle with lettuce. The teams now prepare for the final crop cycle to determine the winner

    The goal of the 3rd Autonomous Greenhouse Challenge is to grow lettuces in two crop cycli fully autonomously with an AI algorithm on a cloud platform with good quality and little resource and energy use and without any human interference in the experimental greenhouses of Wageningen University & Research in Bleiswijk.

    What has been done?

    The first crop cycle of the 3rd Autonomous Greenhouse Challenge started on February 2nd with the planting of cultivar Salanova. Five teams (Team CVA, Team digital_cucumber, Team MondayLettuce, Team VeggieMight, Team Koala) participated in the first try-out experiment to test their algorithms and gain experience. The reference greenhouse was operated by WUR organisers. The goal was to maximize net profit of the lettuce cultivation.

    Each team had a 96 m2 compartment at its disposal in the high-tech greenhouses of Wageningen University & Research in Bleiswijk with standard climate sensors and equipment. The teams’ algorithms had to determine the set points for temperature, amount of daylight and artificial light, heating, CO2 concentration and cultivation-related parameters such as crop density. Vision technology provided the teams with on-line status information. The teams’ algorithms were mounted on a virtual machine on a protected WUR server. Data from the greenhouse is received via a digital interface from LetsGrow and Azure Cloud. At the same time, the algorithms autonomously send setpoints back to the process computer, which ultimately takes the action on climate control in the experimental greenhouse.

    Different strategies lead to interesting learnings

    Teams followed different climate strategies, varying in temperature, assimilation additional LED-light and CO2 application. This resulted in different growth duration, use of resources and lettuce head weights. For example, average temperature varied between 18.9 and 21.9oC, and daily amounts of PAR light varied between 9.1 and 16.3 mol/m2/day. Also crop spacing strategies varied, resulting in averages plant densities from 24 to 38 plants/m2. As a result, growth duration varied: dates of harvest ranged from March 10 to March 21, and average plant weight at harvest varied from 138 to 320 g.

    Apart from the weight, the quality of the lettuce head is important to determine the price. Lettuce heads were classified in three categories: class A for lettuce heads heavier than 245 g, class B for lettuce heads between 220 and 245 g, and class C for lettuce heads lighter than 220 g and/or with poor quality such as tip burn of or botrytis. For some teams, tip burn and botrytis were very severe. The experiments showed that high radiation and temperature levels were associated with high levels of tip burn.

    The reference crop was cultivated at a relatively low temperature (18oC) and low PAR levels (9.1 mol/m2/d) which resulted in very low levels of tip burn and no botrytis. However, it did not have the highest amount of class A lettuces and the growth duration was longer to reach the target lettuce weight (until 15 March). But, the reference was grown with a relatively low lighting intensity and a relatively low heating input, which resulted in the lowest electricity and consumption and costs.

    The autonomous grown lettuces reached the desired lettuce weight with up to 3 times higher electricity costs, most of them also with higher heating costs. In the first try-out round teams did not yet succeed in realizing a positive net profit due to either lettuce quality issues or high amount of resource use.

    What has been achieved?

    All teams could gain experience with growing lettuce autonomously. Teams’ AI algorithms were able to determine setpoints and to control the lettuce cultivation. The realized controls, the crop and climate measurements have generated very valuable datasets and learning outcomes that the teams can use in the refinement of their algorithms. Data from all compartments will be used by WUR providing an updated computer simulation environment of greenhouse and crop to the teams in order to train and refine their algorithms during the next weeks.

    What is next?

    The final crop cycle will start May 2. The team reaching the highest net profit during that crop cycle crowns itself as winner. The public can follow the competition and teams’ performance on our live dashboard (https://gc-app-challenge.azurewebsites.net/dashboard). Here, we will let you follow the lettuce cultivation and you will discover which team has harvested the most lettuces or which has used energy most efficiently.

    Final event on July 1

    We will organize an International Autonomous Greenhouse Event on July 1. The event will take place at WUR, Bleiswijk. Most parts will also be broadcasted on our YouTube channel. The program of the event can be found here. You can register for the event by using this link.

    Like in the earlier editions all collected data (not the algorithms) will be made publicly available after the competition has ended.

    Look at www.autonomousgreenhouses.nl for more background information.

    The challenge is sponsored by Tencent, Fluence by Osram, Gebr. Geers B.V., Sigrow, LetsGrow.com, Ridder, Hortiplan, Glastuinbouw Nederland, Kas als Energiebron and Lansingerland municipality.

    Share this:

    • Click to share on Facebook (Opens in new window) Facebook
    • Click to share on LinkedIn (Opens in new window) LinkedIn
    • Click to share on Reddit (Opens in new window) Reddit
    • Click to share on X (Opens in new window) X
    • Click to share on Tumblr (Opens in new window) Tumblr
    Education Greenhouse Hydroponics Indoor Ag Technology LED Grow Lights Technology Wageningen University
    urbanagnews

    Related Posts

    University of Florida Greenhouse Training: Online Greenhouse 101 Starts June 2!

    May 8, 2025

    Get Ready to Grow Smarter: CEA Summit East 2025 Returns to Virginia This September

    April 24, 2025

    How many people really understand how tariffs work?

    April 23, 2025
    Leave A Reply Cancel Reply

    This site uses Akismet to reduce spam. Learn how your comment data is processed.

    About UAN

    Urban Ag News strives to be the leading science communicator for the commercial hydroponics, greenhouse vegetable, vertical farming and urban agriculture industries. Read more...

    Facebook X (Twitter) Instagram
    • About Us
    • Contact Us
    • Donate
    • Subscribe to our Newsletter
    • Jobs in Urban Agriculture
    © 2025 CHIGGINS CONSULTANCY

    Type above and press Enter to search. Press Esc to cancel.